Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation.
نویسندگان
چکیده
Wave propagation in ventricular muscle is rendered highly anisotropic by the intramural rotation of the fiber. This rotational anisotropy is especially important because it can produce a twist of electrical vortices, which measures the rate of rotation (in degree/mm) of activation wavefronts in successive planes perpendicular to a line of phase singularity, or filament. This twist can then significantly alter the dynamics of the filament. This paper explores this dynamics via numerical simulation. After a review of the literature, we present modeling tools that include: (i) a simplified ionic model with three membrane currents that approximates well the restitution properties and spiral wave behavior of more complex ionic models of cardiac action potential (Beeler-Reuter and others), and (ii) a semi-implicit algorithm for the fast solution of monodomain cable equations with rotational anisotropy. We then discuss selected results of a simulation study of vortex dynamics in a parallelepipedal slab of ventricular muscle of varying wall thickness (S) and fiber rotation rate (theta(z)). The main finding is that rotational anisotropy generates a sufficiently large twist to destabilize a single transmural filament and cause a transition to a wave turbulent state characterized by a high density of chaotically moving filaments. This instability is manifested by the propagation of localized disturbances along the filament and has no previously known analog in isotropic excitable media. These disturbances correspond to highly twisted and distorted regions of filament, or "twistons," that create vortex rings when colliding with the natural boundaries of the ventricle. Moreover, when sufficiently twisted, these rings expand and create additional filaments by further colliding with boundaries. This instability mechanism is distinct from the commonly invoked patchy failure or wave breakup that is not observed here during the initial instability. For modified Beeler-Reuter-like kinetics with stable reentry in two dimensions, decay into turbulence occurs in the left ventricle in about one second above a critical wall thickness in the range of 4-6 mm that matches experiment. However this decay is suppressed by uniformly decreasing excitability. Specific experiments to test these results, and a method to characterize the filament density during fibrillation are discussed. Results are contrasted with other mechanisms of fibrillation and future prospects are summarized. (c)1998 American Institute of Physics.
منابع مشابه
Scroll-Wave Dynamics in Human Cardiac Tissue: Lessons from a Mathematical Model with Inhomogeneities and Fiber Architecture
Cardiac arrhythmias, such as ventricular tachycardia (VT) and ventricular fibrillation (VF), are among the leading causes of death in the industrialized world. These are associated with the formation of spiral and scroll waves of electrical activation in cardiac tissue; single spiral and scroll waves are believed to be associated with VT whereas their turbulent analogs are associated with VF. T...
متن کاملEvolution of a stratified rotating shear layer with horizontal shear. Part 2. Nonlinear evolution
Direct numerical simulation is used to investigate the nonlinear evolution of a horizontally oriented mixing layer with uniform stable stratification and coordinate system rotation about the vertical axis. The important dimensional parameters governing inviscid dynamics are maximum shear S(t), buoyancy frequency N, angular velocity of rotation Ω and characteristic shear thickness L(t). The effe...
متن کاملComputer simulations of three-dimensional propagation in ventricular myocardium. Effects of intramural fiber rotation and inhomogeneous conductivity on epicardial activation.
Three-dimensional membrane-based simulations of action potential propagation in ventricular myocardium were performed. Specifically, the effects of the intramural rotation of the fiber axes and inhomogeneous conductivity on the timing and pattern of epicardial activation were examined. Models were built, with approximately 400,000 microscopic elements arranged in rectangular parallelepipeds in ...
متن کاملStability of spiral wave vortex filaments with phase twists
In this paper we investigate the stability of a straight vortex filament with phase twist described by the three-dimensional complex Ginzburg-Landau equation ~CGLE!. The results of the linear stability analysis show that the straight filament is stable in a limited region of the two parameter space of the CGLE. The stable region is dependent on the phase twist imposed on the filament and shrink...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chaos
دوره 8 1 شماره
صفحات -
تاریخ انتشار 1998